K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

15 tháng 6 2017

từ giả thiết: \(x+y\le xy\le\frac{\left(x+y\right)^2}{4}\)(theo BĐT AM-GM)

\(\Leftrightarrow\left(x+y\right)\left(x+y-4\right)\ge0\)mà x,y dương nên \(x+y\ge4\)

ta có:\(16P\le\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\)

Áp dụng BĐT cauchy-schwarz theo chiều ngược lại:

\(\frac{\left(x+y\right)^2}{5x^2+7y^2}\le\frac{x^2}{3\left(x^2+y^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)

\(\frac{\left(x+y\right)^2}{5y^2+7x^2}\le\frac{y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}\)

\(\Rightarrow\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\le\frac{x^2+y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)(*)

xét \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}=2-\frac{x^2+y^2}{y^2+2x^2}-\frac{x^2+y^2}{x^2+2y^2}=2-\left(x^2+y^2\right)\left(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\right)\)

Áp dụng BĐT cauchy:\(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\ge\frac{4}{3\left(x^2+y^2\right)}\)

do đó \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}\le2-\frac{4}{3}=\frac{2}{3}\)

kết hợp với (*):\(16VT\le\frac{1}{3}+\frac{1}{2}.\frac{2}{3}=\frac{2}{3}\)

\(VT\le\frac{1}{24}\)

Dấu = xảy ra khi x=y=2

14 tháng 6 2017

tưởng giá trị nhỏ nhất chứ

9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

6 tháng 1 2021

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

6 tháng 1 2021

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn

16 tháng 6 2019

Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)

Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)

=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)

Khi đó 

\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)

Dấu bằng xảy ra khi x=y=z=1

Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1

19 tháng 5 2020

dễ vãi mà ko giải đc NGU